El objetivo principal de la estadística inferencial es la estimación, esto es que mediante el estudio de una muestra de una población se quiere generalizar las conclusiones al total de la misma. Como vimos en la sección anterior, los estadísticos varían mucho dentro de sus distribuciones muestrales, y mientras menor sea el error estándar de un estadístico, más cercanos serán unos de otros sus valores.
Existen dos tipos de estimaciones para parámetros; puntuales y por intervalo. Una estimación puntual es un único valor estadístico y se usa para estimar un parámetro. El estadístico usado se denomina estimador.
Una estimación por intervalo es un rango, generalmente de ancho finito, que se espera que contenga el parámetro.
Estimación Puntual
La inferencia estadística está
casi siempre concentrada en obtener algún tipo de conclusión acerca de
uno o más parámetros (características poblacionales). Para hacerlo, se
requiere que un investigador obtenga datos muestrales de cada una de las
poblaciones en estudio. Entonces, las conclusiones pueden estar basadas
en los valores calculados de varias cantidades muestrales . Po ejemplo,
representamos con Cuando se analizan conceptos generales y métodos de inferencia es conveniente tener un símbolo genérico para el parámetro de interés. Se utilizará la letra griega
Una muestra aleatoria de 3 baterías para calculadora podría presentar duraciones observadas en horas de x1=5.0, x2=6.4 y x3=5.9. El valor calculado de la duración media muestral es
Una estimación puntual de un parámetro
El símbolo
Ejemplo:
En el futuro habrá cada vez más interés en desarrollar aleaciones de Mg de bajo costo, para varios procesos de fundición. En consecuencia, es importante contar con métodos prácticos para determinar varias propiedades mecánicas de esas aleaciones. Examine la siguiente muestra de mediciones del módulo de elasticidad obtenidos de un proceso de fundición a presión:
En el mejor de los casos, se encontrará un estimador
Propiedades de un Buen Estimador
Insesgado.- Se dice que un estimador puntualEficiente o con varianza mínima.- Suponga que
Entre todos los estimadores de
En otras palabras, la eficiencia se refiere al tamaño de error estándar de la estadística. Si comparamos dos estaíisticas de una muestra del mismo tamaño y tratamos de decidir cual de ellas es un estimador mas eficiente, escogeríamos la estadística que tuviera el menor error estándar, o la menor desviación estándar de la distribución de muestreo.
Tiene sentido pensar que un estimador con un error estándar menor tendrá una mayor oportunidad de producir una estimación mas cercana al parámetro de población que se esta considerando.
Coherencia.- Una estadística es un estimador coherente de un parámetro de población, si al aumentar el tamaño de la muestra se tiene casi la certeza de que el valor de la estadística se aproxima bastante al valor del parámetro de la población. Si un estimador es coherente se vuelve mas confiable si tenemos tamaños de muestras mas grandes.
Suficiencia.- Un estimador es suficiente si utiliza una cantidad de la información contenida de la muestra que ningún otro estimador podría extraer información adicional de la muestra sobre el parámetro de la población que se esta estimando.
Es decir se pretende que al extraer la muestra el estadístico calculado contenga toda la información de esa muestra. Por ejemplo, cuando se calcula la media de la muestra, se necesitan todos los datos. Cuando se calcula la mediana de una muestra sólo se utiliza a un dato o a dos. Esto es solo el dato o los datos del centro son los que van a representar la muestra. Con esto se deduce que si utilizamos a todos los datos de la muestra como es en el caso de la media, la varianza, desviación estándar, etc; se tendrá un estimador suficiente.
Estimación por Intervalos
Un estimado puntual, por ser un sólo
número, no proporciona por sí mismo información alguna sobre la
precisión y confiabilidad de la estimación. Por ejemplo, imagine que se
usa el estadístico Una interpretación correcta de la "confianza de 95%" radica en la interpretación frecuente de probabilidad a largo plazo: decir que un evento A tiene una probabilidad de 0.95, es decir que si el experimento donde A está definido re realiza una y otra vez, a largo plazo A ocurrirá 95% de las veces. Para este caso
el 95% de los intervalos de confianza calculados contendrán a
De acuerdo con esta interpretación, el nivel de confianza de 95% no es tanto un enunciado sobre cualquier intervalo en particular, más bien se refiere a lo que sucedería si se tuvieran que construir un gran número de intervalos semejantes.
No hay comentarios:
Publicar un comentario