Apoyo para Tesis y Trabajo de grado

Parte de mi aporte como profesional, docente e investigadora venezolana; a los estudiantes que buscan enriquecer sus conocimientos, sustentar sus trabajos y mejorar personal y profesionalmente. Éxitos¡¡¡

30/11/12

¿Cómo se logra la equivalencia inicial?: Asignación al azar.Segun Hernandez, Fernadez y Baptista


Existe un método ampliamente difundido para alcanzar dicha equivalencia que se conoce como

asignación aleatoria o al azar de los sujetos a los grupos del experimento” (en inglés, el término equivalente es“randomization”).

La asignación al azar nos asegura probabilísticamente que dos o más grupos son equivalentes entre sí. Es una técnica de control que tiene como propósito proveer al investigador la seguridad de que variables extrañas, conocidas o desconocidas, no afectarán sistemáticamente los resultados del estudio (Christensen, 1981). Esta técnica debida a Sir Ronald A. Fisher —en los años cuarenta— ha demostrado durante años y pruebas que funciona para hacer equivalentes a grupos. Como mencionan Cochran y Cox (1980, p. 24): “La aleatorización es en cierta forma análoga a un seguro, por el hecho de que es una precaución contra interferencias que pueden o no ocurrir, y ser o no importantes si ocurren. Generalmente, es aconsejable tomarse el trabajo de aleatorizar, aun cuando no se espere que haya un sesgo importante al dejar de hacerlo”.

La asignación al azar puede llevarse a cabo mediante pedacitos de papeL Se escribe el nombre de cada sujeto (o algún tipo de clave que lo identifique) en un pedacito de papel, luego se juntan los pedacitos en algún recipiente, se revuelven y —sin ver— se van sacando para formar los grupos. Pór ejemplo, si se tienen dos grupos, las personas con papelitos nones pueden ir al primer grupo y las personas con pares al segundo grupo; o bien, si se tuvieran 80 personas, los primeros 40 papelitos que se saquen van a un grupo y los restantes 40 al otro.

También, cuando se tienen dos grupos, la aleatorización puede llevarse a cabo utilizando una moneda no cargada.

Se lista a los sujetos y se designa qué lado de la moneda va a significar el grupo 1 y qué lado el
grupo 2 (por ejemplo, “cara” = grupo 1 y cruz” = grupo 2). Con cada sujeto se lanza la moneda y
dependiendo de si resulta cara o cruz se le asigna a uno u otro grupo. Este procedimiento está limitado a sólodos grupos, porque las monedas tienen dos caras. Aunque podrían utilizarse dados o cubos, por ejemplo.

Una tercera forma de asignar a los sujetos a los grupos es mediante el uso de tablas de números aleatorios.

Una tabla de números aleatorios incluye números del 0 al 9, y su secuencia es totalmente al azar (no hay orden, ni patrón o secuencia), la tabla fue generada mediante un programa de computadora. En el apéndice número 5, se muestra una de estas tablas. Primero, se selecciona al azar una página de la tabla (por ejemplo, preguntándole a alguien que diga un número del 1 al X —dependiendo del número de páginas que contenga la tabla o sorteando números—). En la página seleccionada se elige un punto cualquiera (bien numerando columnas o renglones y eligiendo al azar una columna o renglón, o bien cerrando los ojos y colocando la punta de un lápiz sobre algún punto en la página). Posteriormente, se lee una secuencia de dígitos en cualquier dirección (vertical, horizontal o diagonalmente). Una vez que se obtuvo dicha secuencia, se enumeran los nombres de los sujetos por orden alfabético o de acuerdo a un ordenamiento al azar, colocando cada nombre junto a un dígito. Y se pueden asignar los sujetos nones a un grupo y los pares al otro. Lo mismo da asignar los números del 0 al 5 al primer grupo, y los del 6 al 9 al otro grupo. Si tuviéramos cincogrupos, podríamos hacer que los sujetos con 0 y 1 fueran al primer grupo, con 2 y 3 al segundo, 4 y5 al tercero, 6 y 7 al cuarto, y 8 y 9 al quinto grupo.

La asignación al azar produce control, en virtud de que las variables que requieren ser controladas (variables extrañas y fuentes de invalidación interna) son distribuidas —aproximadamente— de la misma manera en los grupos del experimento. Y puesto que la distribución es bastante igual en todos los grupos, la influencia de otras variables que no sean la independiente, se mantiene constante porque éstas no pueden ejercer ninguna influencia diferencial en la variable dependiente o variables dependientes (Christensen, 1981).
La asignación aleatoria funciona más entre mayor sea el número de sujetos con que se cuenta para el experimento,es decir, entre mayor sea el tamaño de los grupos. Los autores recomiendan que para cada grupo se tengan —por lo menos— 15 personas.
 
Tomado de:
Roberto Hernández Sarnpieri, Carlos Fernández-Collado, Pilar Bapista Lucio. McGRAW-
HILL INTERAMERICANA DE MÉXICO,1997.

 
 
 
23

1 comentario:

  1. BUENAS NOCHES, UNA PREGUNTA ESTA PARA SACAR EL % DE LA CONFIABILIDAD, SI MI POBLACION ES DE 165 ALUMNOS PERO LE APLICO EL INSTRUMENTO A 30 ADOLESCENTES NADA MAS Y LOS PROFESORES SON 25 Y LE APLICO EL INTRUMENTO A 5 NADA MAS. ¿CUAL SERIA EL RESULTADO DE LA CONFIABILIDAD?

    ResponderEliminar