Servicio de Asesoría Metodológica

Servicio de Asesoría Metodológica:

Asesoramos en forma integral tesis de grado y proyectos sólo en Venezuela. Todas las carreras: TSU, Pre grado y Post grado. Análisis estadísticos, acompañamiento en correcciones. Utilizamos las normas UPEL, incluyendo además reglamentos o normas de la Universidad o Instituto al cual pertenezcas. (No tenemos agencias en ningún otro país)

9/4/12

ESTIMACION


El objetivo principal de la estadística inferencial es la estimación, esto es que mediante el estudio de una muestra de una población se quiere generalizar las conclusiones al total de la misma. Como vimos en la sección anterior, los estadísticos varían mucho dentro de sus distribuciones muestrales, y mientras menor sea el error estándar de un estadístico, más cercanos serán unos de otros sus valores.
Existen dos tipos de estimaciones para parámetros; puntuales y por intervalo. Una estimación puntual es un único valor estadístico y se usa para estimar un parámetro. El estadístico usado se denomina estimador.
Una estimación por intervalo es un rango, generalmente de ancho finito, que se espera que contenga el parámetro.

Estimación Puntual
La inferencia estadística está casi siempre concentrada en obtener algún tipo de conclusión acerca de uno o más parámetros (características poblacionales). Para hacerlo, se requiere que un investigador obtenga datos muestrales de cada una de las poblaciones en estudio. Entonces, las conclusiones pueden estar basadas en los valores calculados de varias cantidades muestrales . Po ejemplo, representamos con (parámetro) el verdadero promedio de resistencia a la ruptura de conexiones de alambres utilizados para unir obleas de semiconductores. Podría tomarse una muestra aleatoria de 10 conexiones para determinar la resistencia a la ruptura de cada una, y la media muestral de la resistencia a la ruptura se podía emplear para sacar una conclusión acerca del valor de . De forma similar, si es la varianza de la distribución de resistencia a la ruptura, el valor de la varianza muestral s2 se podría utilizar pra inferir algo acerca de .
Cuando se analizan conceptos generales y métodos de inferencia es conveniente tener un símbolo genérico para el parámetro de interés. Se utilizará la letra griega para este propósito. El objetivo de la estimación puntual es seleccionar sólo un número, basados en datos de la muestra, que represente el valor más razonable de .
Una muestra aleatoria de 3 baterías para calculadora podría presentar duraciones observadas en horas de x1=5.0, x2=6.4 y x3=5.9. El valor calculado de la duración media muestral es = 5.77, y es razonable considerar 5.77 como el valor más adecuado de .
Una estimación puntual de un parámetro es un sólo número que se puede considerar como el valor más razonable de . La estimación puntual se obtiene al seleccionar una estadística apropiada y calcular su valor a partir de datos de la muestra dada. La estadística seleccionada se llama estimador puntual de .


El símbolo (theta sombrero) suele utilizarse para representar el estimador de y la estimación puntual resultante de una muestra dada. Entonces se lee como "el estimador puntual de es la media muestral ". El enunciado "la estimación puntual de es 5.77" se puede escribir en forma abreviada .
Ejemplo:
En el futuro habrá cada vez más interés en desarrollar aleaciones de Mg de bajo costo, para varios procesos de fundición. En consecuencia, es importante contar con métodos prácticos para determinar varias propiedades mecánicas de esas aleaciones. Examine la siguiente muestra de mediciones del módulo de elasticidad obtenidos de un proceso de fundición a presión:

44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1 Suponga que esas observaciones son el resultado de una muestra aleatoria. Se desea estimar la varianza poblacional . Un estimador natural es la varianza muestral:

En el mejor de los casos, se encontrará un estimador para el cualsiempre. Sin embargo, es una función de las Xi muestrales, por lo que en sí misma una variable aleatoria.

+ error de estimación
entonces el estimador preciso sería uno que produzca sólo pequeñas diferencias de estimación, de modo que los valores estimados se acerquen al valor verdadero.
Propiedades de un Buen Estimador
Insesgado.- Se dice que un estimador puntual es un estimador insesgado de si , para todo valor posible de . En otras palabras, un estimador insesgado es aquel para el cual la media de la distribución muestral es el parámetro estimado. Si se usa la media muestral para estimar la media poblacional , se sabe que la , por lo tanto la media es un estimador insesgado.
Eficiente o con varianza mínima.- Suponga que 1 y 2 son dos estimadores insesgados de . Entonces, aun cuando la distribución de cada estimador esté centrada en el valor verdadero de , las dispersiones de las distribuciones alrededor del valor verdadero pueden ser diferentes.
Entre todos los estimadores de que son insesgados, seleccione al que tenga varianza mínima. El resultante recibe el nombre de estimador insesgado con varianza mínima (MVUE, minimum variance unbiased estimator) de .
En otras palabras, la eficiencia se refiere al tamaño de error estándar de la estadística. Si comparamos dos estaíisticas de una muestra del mismo tamaño y tratamos de decidir cual de ellas es un estimador mas eficiente, escogeríamos la estadística que tuviera el menor error estándar, o la menor desviación estándar de la distribución de muestreo.
Tiene sentido pensar que un estimador con un error estándar menor tendrá una mayor oportunidad de producir una estimación mas cercana al parámetro de población que se esta considerando.

Como se puede observar las dos distribuciones tienen un mismo valor en el parámetro sólo que la distribución muestral de medias tiene una menor varianza, por lo que la media se convierte en un estimador eficiente e insesgado.
Coherencia.- Una estadística es un estimador coherente de un parámetro de población, si al aumentar el tamaño de la muestra se tiene casi la certeza de que el valor de la estadística se aproxima bastante al valor del parámetro de la población. Si un estimador es coherente se vuelve mas confiable si tenemos tamaños de muestras mas grandes.
Suficiencia.- Un estimador es suficiente si utiliza una cantidad de la información contenida de la muestra que ningún otro estimador podría extraer información adicional de la muestra sobre el parámetro de la población que se esta estimando.
Es decir se pretende que al extraer la muestra el estadístico calculado contenga toda la información de esa muestra. Por ejemplo, cuando se calcula la media de la muestra, se necesitan todos los datos. Cuando se calcula la mediana de una muestra sólo se utiliza a un dato o a dos. Esto es solo el dato o los datos del centro son los que van a representar la muestra. Con esto se deduce que si utilizamos a todos los datos de la muestra como es en el caso de la media, la varianza, desviación estándar, etc; se tendrá un estimador suficiente.
Estimación por Intervalos
Un estimado puntual, por ser un sólo número, no proporciona por sí mismo información alguna sobre la precisión y confiabilidad de la estimación. Por ejemplo, imagine que se usa el estadístico para calcular un estimado puntual de la resistencia real a la ruptura de toallas de papel de cierta marca, y suponga que = 9322.7. Debido a la variabilidad de la muestra, nunca se tendrá el caso de que =. El estimado puntual nada dice sobre lo cercano que esta de . Una alternativa para reportar un solo valor del parámetro que se esté estimando es calcular e informar todo un intervalo de valores factibles, un estimado de intervalo o intervalo de confianza (IC). Un intervalo de confianza se calcula siempre seleccionando primero un nivel de confianza, que es una medida de el grado de fiabilidad en el intervalo. Un intervalo de confianza con un nivel de confianza de 95% de la resistencia real promedio a la ruptura podría tener un límite inferior de 9162.5 y uno superior de 9482.9. Entonces, en un nivel de confianza de 95%, es posible tener cualquier valor de entre 9162.5 y 9482.9. Un nivel de confianza de 95% implica que 95% de todas las muestras daría lugar a un intervalo que incluye o cualquier otro parámetro que se esté estimando, y sólo 5% de las muestras producirá un intervalo erróneo. Cuanto mayor sea el nivel de confianza podremos creer que el valor del parámetro que se estima está dentro del intervalo.
Una interpretación correcta de la "confianza de 95%" radica en la interpretación frecuente de probabilidad a largo plazo: decir que un evento A tiene una probabilidad de 0.95, es decir que si el experimento donde A está definido re realiza una y otra vez, a largo plazo A ocurrirá 95% de las veces. Para este caso
el 95% de los intervalos de confianza calculados contendrán a .

Esta es una construcción repetida de intervalos de confianza de 95% y se puede observar que de los 11 intervalos calculados sólo el tercero y el último no contienen el valor de .
De acuerdo con esta interpretación, el nivel de confianza de 95% no es tanto un enunciado sobre cualquier intervalo en particular, más bien se refiere a lo que sucedería si se tuvieran que construir un gran número de intervalos semejantes.

No hay comentarios:

Publicar un comentario en la entrada