Servicio de Asesoría Metodológica

Servicio de Asesoría Metodológica:

Asesoramos en forma integral tesis de grado y proyectos sólo en Venezuela. Todas las carreras: TSU, Pre grado y Post grado. Análisis estadísticos, acompañamiento en correcciones. Utilizamos las normas UPEL, incluyendo además reglamentos o normas de la Universidad o Instituto al cual pertenezcas. (No tenemos agencias en ningún otro país)

6/6/11

Distribución de Frecuencia Agrupadas


Supongamos que medimos la estatura de los habitantes de una vivienda y obtenemos los siguientes resultados (cm):
Habitante
Estatura
Habitante
Estatura
Habitante
Estatura
x
x
x
x
x
x
Habitante 1
1,15
Habitante 11
1,53
Habitante 21
1,21
Habitante 2
1,48
Habitante 12
1,16
Habitante 22
1,59
Habitante 3
1,57
Habitante 13
1,60
Habitante 23
1,86
Habitante 4
1,71
Habitante 14
1,81
Habitante 24
1,52
Habitante 5
1,92
Habitante 15
1,98
Habitante 25
1,48
Habitante 6
1,39
Habitante 16
1,20
Habitante 26
1,37
Habitante 7
1,40
Habitante 17
1,42
Habitante 27
1,16
Habitante 8
1,64
Habitante 18
1,45
Habitante 28
1,73
Habitante 9
1,77
Habitante 19
1,20
Habitante 29
1,62
Habitante 10
1,49
Habitante 20
1,98
Habitante 30
1,01
Si presentáramos esta información en una tabla de frecuencia obtendriamos una tabla de 30 líneas (una para cada valor), cada uno de ellos con una frecuencia absoluta de 1 y con una frecuencia relativa del 3,3%. Esta tabla nos aportaría escasa imformación
En lugar de ello, preferimos agrupar los datos por intervalos, con lo que la información queda más resumida (se pierde, por tanto, algo de información), pero es más manejable e informativa:
Estatura
Frecuencias absolutas
Frecuencias relativas
Cm
Simple
Acumulada
Simple
Acumulada
x
x
x
x
x
1,01 - 1,10
1
1
3,3%
3,3%
1,11 - 1,20
3
4
10,0%
13,3%
1,21 - 1,30
3
7
10,0%
23,3%
1,31 - 1,40
2
9
6,6%
30,0%
1,41 - 1,50
6
15
20,0%
50,0%
1,51 - 1,60
4
19
13,3%
63,3%
1,61 - 1,70
3
22
10,0%
73,3%
1,71 - 1,80
3
25
10,0%
83,3%
1,81 - 1,90
2
27
6,6%
90,0%
1,91 - 2,00
3
30
10,0%
100,0%
El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.
La distribución de frecuencias agrupadas o tabla con datos agrupados se emplea si las variables toman un número grande de valores o la variable es continua.
Se agrupan los valores en intervalos que tengan la misma amplitud denominados clases. A cada clase se le asigna su frecuencia correspondiente.
Límites de la clase
Cada clase está delimitada por el límite inferior de la clase y el límite superior de la clase.
Amplitud de la clase
La amplitud de la clase es la diferencia entre el límite superior e inferior de la clase.
Marca de clase
La marca de clase es el punto medio de cada intervalo y es el valor que representa a todo el intervalo para el cálculo de algunos parámetros.
Construcción de una tabla de datos agrupados
3, 15, 24, 28, 33, 35, 38, 42, 43, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, 13.
1º se localizan los valores menor y mayor de la distribución. En este caso son 3 y 48.
2º Se restan y se busca un número entero un poco mayor que la diferencia y que sea divisible por el número de intervalos de queramos poner.
Es conveniente que el número de intervalos oscile entre 6 y 15.
En este caso, 48 - 3 = 45, incrementamos el número hasta 50 : 5 = 10 intervalos.
Se forman los intervalos teniendo presente que el límite inferior de una clase pertenece al intervalo, pero el límite superior no pertenece intervalo, se cuenta en el siguiente intervalo.

ci
fi
Fi
ni
Ni
[0, 5)
2.5
1
1
0.025
0.025
[5, 10)
7.5
1
2
0.025
0.050
[10, 15)
12.5
3
5
0.075
0.125
[15, 20)
17.5
3
8
0.075
0.200
[20, 25)
22.5
3
11
0.075
0.2775
[25, 30)
27.5
6
17
0.150
0.425
[30, 35)
32.5
7
24
0.175
0.600
[35, 40)
37.5
10
34
0.250
0.850
[40, 45)
42.5
4
38
0.100
0.950
[45, 50)
47.5
2
40
0.050
1


40

1


No hay comentarios:

Publicar un comentario en la entrada