Servicio de Asesoría Metodológica

Servicio de Asesoría Metodológica:

Asesoramos en forma integral tesis de grado y proyectos sólo en Venezuela. Todas las carreras: TSU, Pre grado y Post grado. Análisis estadísticos, acompañamiento en correcciones. Utilizamos las normas UPEL, incluyendo además reglamentos o normas de la Universidad o Instituto al cual pertenezcas. (No tenemos agencias en ningún otro país)

7/6/11

Medidas de posición no central



Medidas de posición no centrales
Las medidas de posición no centrales permiten conocer otros puntos característicos de la distribución que no son los valores centrales. Entre otros indicadores, se suelen utilizar una serie de valores que dividen la muestra en tramos iguales:
Cuartiles: son 3 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cuatro tramos iguales, en los que cada uno de ellos concentra el 25% de los resultados.
Deciles: son 9 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en diez tramos iguales, en los que cada uno de ellos concentra el 10% de los resultados.
Percentiles: son 99 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cien tramos iguales, en los que cada uno de ellos concentra el 1% de los resultados.
Ejemplo: Vamos a calcular los cuartiles de la serie de datos referidos a la estatura de un grupo de alumnos (lección 2ª). Los deciles y centiles se calculan de igual manera, aunque haría falta distribuciones con mayor número de datos.
Variable
Frecuencias absolutas
Frecuencias relativas
(Valor)
Simple
Acumulada
Simple
Acumulada
xxxxx
1,20
1
1
3,3%
3,3%
1,21
4
5
13,3%
16,6%
1,22
4
9
13,3%
30,0%
1,23
2
11
6,6%
36,6%
1,24
1
12
3,3%
40,0%
1,25
2
14
6,6%
46,6%
1,26
3
17
10,0%
56,6%
1,27
3
20
10,0%
66,6%
1,28
4
24
13,3%
80,0%
1,29
3
27
10,0%
90,0%
1,30
3
30
10,0%
100,0%

1º cuartil: es el valor 1,22 cm, ya que por debajo suya se situa el 25% de la frecuencia (tal como se puede ver en la columna de la frecuencia relativa acumulada).
2º cuartil: es el valor 1,26 cm, ya que entre este valor y el 1º cuartil se situa otro 25% de la frecuencia.
3º cuartil: es el valor 1,28 cm, ya que entre este valor y el 2º cuartil se sitúa otro 25% de la frecuencia. Además, por encima suya queda el restante 25% de la frecuencia.
Atención: cuando un cuartil recae en un valor que se ha repetido más de una vez (como ocurre en el ejemplo en los tres cuartiles) la medida de posición no central sería realmente una de las repeticiones.


En estadística descriptiva, las medidas de posición no central permiten conocer otros puntos característicos de la distribución que no son los valores centrales. Entre las medidas de posición no central más importantes están los cuantiles.
El término cuantil fue usado por primera vez por Kendall en 1940. El cuantil de orden p de una distribución (con 0 < p < 1) es el valor de la variable xp que marca un corte de modo que una proporción p de valores de la población es menor o igual que xp. Por ejemplo, el cuantil de orden 0.36 dejaría un 36% de valores por debajo y el cuantil de orden 0.50 se corresponde con la mediana de la distribución.
Los cuantiles suelen usarse por grupos que dividen la distribución en partes iguales; entendidas estas como intervalos que comprenden la misma proporción de valores. Los más usados son:
Los Cuartiles, que dividen a la distribución en cuatro partes (corresponden a los cuantiles 0.25, 0.50 y 0.75);
Los Quintiles, que dividen a la distribución en cinco partes (corresponden a los cuantiles 0.20, 0.40, 0.60 y 0.80) 
Los Deciles, que dividen a la distribución en diez partes;
Los Percentiles, que dividen a la distribución en cien partes.
En el cálculo de cuantiles con distribuciones de variable continua (por ejemplo, con datos agrupados) puede conseguirse fácilmente que las partes en que se divide la distribución sean exactamente iguales. Sin embargo, en las distribuciones de variable discreta (como el caso de datos aislados) debemos conformarnos con que estas partes sean aproximadamente iguales. Por desgracia, no hay consenso sobre la forma en que realizar esta aproximación, existiendo en la literatura científica nueve métodos diferentes, que conducen a resultados diferentes. Por ello, al calcular cualquier cuantil de datos no agrupados por medio de calculadora, software o manualmente, es básico el saber e indicar el método utilizado.
La función que a cada p le asigna el punto de corte xp, es decir, el valor del cuantil de orden p, se denomina función cuantil.


No hay comentarios:

Publicar un comentario en la entrada