Apoyo para Tesis y Trabajo de grado

Parte de mi aporte como profesional, docente e investigadora venezolana; a los estudiantes que buscan enriquecer sus conocimientos, sustentar sus trabajos y mejorar personal y profesionalmente. Éxitos¡¡¡

6/6/11

Medidas de Distibución - Asimetría y Curtosis

Las medidas de distribución nos permiten identificar la forma en que se separan o aglomeran los valores de acuerdo a su representación gráfica. Estas medidas describen la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la información. Su utilidad radica en la posibilidad de identificar las características de la distribución sin necesidad de generar el gráfico. Sus principales medidas son la Asimetría y la Curtosis.

1. ASIMETRÍA

Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes [Fig.5-1], cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positivacuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativacuando la mayor cantidad de datos se aglomeran en los valores menores que la media.

Estados de La Asimetria - Medidas de Distribucion
Figura 5-1

El Coeficiente de asimetría, se representa mediante la ecuación matemática,

Ecuacion de la Asimetria - Medidas de Distribucion
Ecuación 5-9

Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, () la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan:

  • (g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad de valores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (± 0.5).
  • (g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media.
  • (g1 < 0): La curva es asimétricamente negativa por lo que los valores se tienden a reunir más en la parte derecha de la media.

Desde luego entre mayor sea el número (Positivo o Negativo), mayor será la distancia que separa la aglomeración de los valores con respecto a la media.

2. CURTOSIS

Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).

Estados de la Curtosis - Medidas de Distribucion
Figura 5-2

Para calcular el coeficiente de Curtosis se utiliza la ecuación:

Ecuacion de la Curtosis Corregida para SPSS (-3) - Medidas de Distribucion
Ecuacion 5-10

Donde (g2) representa el coeficiente de Curtosis, (Xi) cada uno de los valores, () la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta fórmula se interpretan:

  • (g2 = 0) la distribución es MesocúrticaAl igual que en la asimetría es bastante difícil  encontrar un coeficiente de Curtosis de cero (0), por lo que se suelen aceptar los valores cercanos (± 0.5 aprox.).
  • (g2 > 0) la distribución es Leptocúrtica
  • (g2 < 0) la distribución es Platicúrtica

Cuando la distribución de los datos cuenta con un coeficiente de asimetría (g1 = ±0.5) y un coeficiente de Curtosis de (g2 = ±0.5), se le denomina Curva Normal. Este criterio es de suma importancia ya que para la mayoría de los procedimientos de la estadística de inferencia se requiere que los datos se distribuyan normalmente.

La principal ventaja de la distribución normal radica en el supuesto que el 95% de los valores se encuentra dentro de una distancia de dos desviaciones estándar de la media aritmética (Fig.5-3); es decir, si tomamos la media y le sumamos dos veces la desviación y después le restamos a la media dos desviaciones, el 95% de los casos se encontraría dentro del rango que compongan estos valores.

Figura 5-3

Desde luego, los conceptos vistos hasta aquí, son sólo una pequeña introducción a las principales medidas de Estadística Descriptiva; es de gran importancia que los lectores profundicen en estos temas ya que la principal dificultad del paquete SPSS radica en el desconocimiento de los conceptos estadísticos.

Las definiciones plasmadas en este capítulo han sido extraídas de los libros Estadística para administradores escrito por Alan Wester de la editorial McGraw-Hill y el libroEstadística y Muestreo escrito por Ciro Martínez editorial Ecoe editores (Octava edición). No necesariamente tienes que guiarte por estos libros ya que en las librerías encontraras una gran variedad de textos que pueden ser de bastante utilidad en la introducción a esta ciencia.

2 comentarios:

  1. EXCELENTE INFORMACIÓN, CLARA, PRECISA Y CONCISA.

    ResponderEliminar
  2. Saludos, has sido elegido para ser miembro de la luz. Bueno, aquí está Tu oportunidad de unirte a la hermandad Illuminati para ser rico, poderoso, famoso, rico, protegido y respetado. Los Illuminati son una hermandad que se ama, se comparte y planes para establecer el nuevo orden mundial que están recibiendo $ 1.000.000 millones de dólares ¡¡Cada nuevo miembro de la hermandad !! para obtener más información !!!. Responda este mensaje ahora con "Acepto" para obtener los pasos para unirse a la Hermandad. Saludos, Illuminati ...

    Correo electrónico: …Jameswilliamilluminati@gmail.com
    WHATAPP: +234706580 1171 ..

    ResponderEliminar